1. 协程,线程,进程的区别。
- 进程
进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位。每个进程都有自己的独立内存空间,不同进程通过进程间通信来通信。由于进程比较重量,占据独立的内存,所以上下文进程间的切换开销(栈、寄存器、虚拟内存、文件句柄等)比较大,但相对比较稳定安全。
- 线程
线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源。线程间通信主要通过共享内存,上下文切换很快,资源开销较少,但相比进程不够稳定容易丢失数据。
- 协程
协程是一种用户态的轻量级线程,协程的调度完全由用户控制。协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈,直接操作栈则基本没有内核切换的开销,可以不加锁的访问全局变量,所以上下文的切换非常快。
2. 互斥锁,读写锁,死锁问题是怎么解决。
- 互斥锁
互斥锁就是互斥变量mutex,用来锁住临界区的.
条件锁就是条件变量,当进程的某些资源要求不满足时就进入休眠,也就是锁住了。当资源被分配到了,条件锁打开,进程继续运行;读写锁,也类似,用于缓冲区等临界资源能互斥访问的。
- 读写锁
通常有些公共数据修改的机会很少,但其读的机会很多。并且在读的过程中会伴随着查找,给这种代码加锁会降低我们的程序效率。读写锁可以解决这个问题。
注意:写独占,读共享,写锁优先级高
- 死锁
一般情况下,如果同一个线程先后两次调用lock,在第二次调用时,由于锁已经被占用,该线程会挂起等待别的线程释放锁,然而锁正是被自己占用着的,该线程又被挂起而没有机会释放锁,因此就永远处于挂起等待状态了,这叫做死锁(Deadlock)。 另外一种情况是:若线程A获得了锁1,线程B获得了锁2,这时线程A调用lock试图获得锁2,结果是需要挂起等待线程B释放锁2,而这时线程B也调用lock试图获得锁1,结果是需要挂起等待线程A释放锁1,于是线程A和B都永远处于挂起状态了。
死锁产生的四个必要条件:
- 互斥条件:一个资源每次只能被一个进程使用
- 请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
- 不剥夺条件:进程已获得的资源,在末使用完之前,不能强行剥夺。
- 循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。 这四个条件是死锁的必要条件,只要系统发生死锁,这些条件必然成立,而只要上述条件之一不满足,就不会发生死锁。
a. 预防死锁
可以把资源一次性分配:(破坏请求和保持条件)
然后剥夺资源:即当某进程新的资源未满足时,释放已占有的资源(破坏不可剥夺条件)
资源有序分配法:系统给每类资源赋予一个编号,每一个进程按编号递增的顺序请求资源,释放则相反(破坏环路等待条件)
b. 避免死锁
预防死锁的几种策略,会严重地损害系统性能。因此在避免死锁时,要施加较弱的限制,从而获得 较满意的系统性能。由于在避免死锁的策略中,允许进程动态地申请资源。因而,系统在进行资源分配之前预先计算资源分配的安全性。若此次分配不会导致系统进入不安全状态,则将资源分配给进程;否则,进程等待。其中最具有代表性的避免死锁算法是银行家算法。
c. 检测死锁
首先为每个进程和每个资源指定一个唯一的号码,然后建立资源分配表和进程等待表.
d. 解除死锁
当发现有进程死锁后,便应立即把它从死锁状态中解脱出来,常采用的方法有.
e. 剥夺资源
从其它进程剥夺足够数量的资源给死锁进程,以解除死锁状态.
f. 撤消进程
可以直接撤消死锁进程或撤消代价最小的进程,直至有足够的资源可用,死锁状态.消除为止.所谓代价是指优先级、运行代价、进程的重要性和价值等。
3. Golang的内存模型,为什么小对象多了会造成gc压力。
通常小对象过多会导致GC三色法消耗过多的GPU。优化思路是,减少对象分配.
4. Data Race问题怎么解决?能不能不加锁解决这个问题?
同步访问共享数据是处理数据竞争的一种有效的方法.golang在1.1之后引入了竞争检测机制,可以使用 go run -race 或者 go build -race来进行静态检测。 其在内部的实现是,开启多个协程执行同一个命令, 并且记录下每个变量的状态.
竞争检测器基于C/C++的ThreadSanitizer 运行时库,该库在Google内部代码基地和Chromium找到许多错误。这个技术在2012年九月集成到Go中,从那时开始,它已经在标准库中检测到42个竞争条件。现在,它已经是我们持续构建过程的一部分,当竞争条件出现时,它会继续捕捉到这些错误。
竞争检测器已经完全集成到Go工具链中,仅仅添加-race标志到命令行就使用了检测器。
$ go test -race mypkg // 测试包
$ go run -race mysrc.go // 编译和运行程序 $ go build -race mycmd // 构建程序 $ go install -race mypkg // 安装程序
要想解决数据竞争的问题可以使用互斥锁sync.Mutex,解决数据竞争(Data race),也可以使用管道解决,使用管道的效率要比互斥锁高.
5. 什么是channel,为什么它可以做到线程安全?
Channel是Go中的一个核心类型,可以把它看成一个管道,通过它并发核心单元就可以发送或者接收数据进行通讯(communication),Channel也可以理解是一个先进先出的队列,通过管道进行通信。
Golang的Channel,发送一个数据到Channel 和 从Channel接收一个数据 都是 原子性的。而且Go的设计思想就是:不要通过共享内存来通信,而是通过通信来共享内存,前者就是传统的加锁,后者就是Channel。也就是说,设计Channel的主要目的就是在多任务间传递数据的,这当然是安全的。
6. Epoll原理.
开发高性能网络程序时,windows开发者们言必称Iocp,linux开发者们则言必称Epoll。大家都明白Epoll是一种IO多路复用技术,可以非常高效的处理数以百万计的Socket句柄,比起以前的Select和Poll效率提高了很多。
先简单了解下如何使用C库封装的3个epoll系统调用。
int epoll_create(int size);
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event); int epoll_wait(int epfd, struct epoll_event *events,int maxevents, int timeout);
使用起来很清晰,首先要调用epoll_create
建立一个epoll对象。参数size是内核保证能够正确处理的最大句柄数,多于这个最大数时内核可不保证效果。 epoll_ctl可以操作上面建立的epoll,例如,将刚建立的socket
加入到epoll中让其监控,或者把 epoll正在监控的某个socket句柄移出epoll,不再监控它等等。
epoll_wait
在调用时,在给定的timeout时间内,当在监控的所有句柄中有事件发生时,就返回用户态的进程。
从调用方式就可以看到epoll相比select/poll的优越之处是,因为后者每次调用时都要传递你所要监控的所有socket给select/poll系统调用,这意味着需要将用户态的socket列表copy到内核态,如果以万计的句柄会导致每次都要copy几十几百KB的内存到内核态,非常低效。而我们调用epoll_wait
时就相当于以往调用select/poll,但是这时却不用传递socket句柄给内核,因为内核已经在epoll_ctl中拿到了要监控的句柄列表。
所以,实际上在你调用epoll_create
后,内核就已经在内核态开始准备帮你存储要监控的句柄了,每次调用epoll_ctl
只是在往内核的数据结构里塞入新的socket句柄。
在内核里,一切皆文件。所以,epoll向内核注册了一个文件系统,用于存储上述的被监控socket。当你调用epoll_create时,就会在这个虚拟的epoll文件系统里创建一个file结点。当然这个file不是普通文件,它只服务于epoll。
epoll在被内核初始化时(操作系统启动),同时会开辟出epoll自己的内核高速cache区,用于安置每一个我们想监控的socket,这些socket会以红黑树的形式保存在内核cache里,以支持快速的查找、插入、删除。这个内核高速cache区,就是建立连续的物理内存页,然后在之上建立slab层,通常来讲,就是物理上分配好你想要的size的内存对象,每次使用时都是使用空闲的已分配好的对象。
static int __init eventpoll_init(void) {
... ...
/* Allocates slab cache used to allocate "struct epitem" items */ epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 0, SLAB_HWCACHE_ALIGN|EPI_SLAB_DEBUG|SLAB_PANIC, NULL, NULL); /* Allocates slab cache used to allocate "struct eppoll_entry" */ pwq_cache = kmem_cache_create("eventpoll_pwq", sizeof(struct eppoll_entry), 0, EPI_SLAB_DEBUG|SLAB_PANIC, NULL, NULL); ... ... }
epoll的高效就在于,当我们调用epoll_ctl
往里塞入百万个句柄时,epoll_wait
仍然可以飞快的返回,并有效的将发生事件的句柄给我们用户。这是由于我们在调用epoll_create
时,内核除了帮我们在epoll文件系统里建了个file结点,在内核cache里建了个红黑树用于存储以后epoll_ctl传来的socket外,还会再建立一个list链表,用于存储准备就绪的事件,当epoll_wait调用时,仅仅观察这个list链表里有没有数据即可。有数据就返回,没有数据就sleep,等到timeout时间到后即使链表没数据也返回。所以,epoll_wait非常高效。
而且,通常情况下即使我们要监控百万计的句柄,大多一次也只返回很少量的准备就绪句柄而已,所以,epoll_wait仅需要从内核态copy少量的句柄到用户态而已,因此就会非常的高效!
然而,这个准备就绪list链表是怎么维护的呢?当我们执行epoll_ctl时,除了把socket放到epoll文件系统里file对象对应的红黑树上之外,还会给内核中断处理程序注册一个回调函数,告诉内核,如果这个句柄的中断到了,就把它放到准备就绪list链表里。所以,当一个socket上有数据到了,内核在把网卡上的数据copy到内核中后就来把socket插入到准备就绪链表里了。
如此,一个红黑树,一张准备就绪句柄链表,少量的内核cache,就帮我们解决了大并发下的socket处理问题。执行epoll_create
时,创建了红黑树和就绪链表,执行epoll_ctl时,如果增加socket句柄,则检查在红黑树中是否存在,存在立即返回,不存在则添加到树干上,然后向内核注册回调函数,用于当中断事件来临时向准备就绪链表中插入数据。执行epoll_wait时立刻返回准备就绪链表里的数据即可。
最后看看epoll独有的两种模式LT和ET。无论是LT和ET模式,都适用于以上所说的流程。区别是,LT模式下,只要一个句柄上的事件一次没有处理完,会在以后调用epoll_wait时每次返回这个句柄,而ET模式仅在第一次返回。
当一个socket句柄上有事件时,内核会把该句柄插入上面所说的准备就绪list链表,这时我们调用epoll_wait
,会把准备就绪的socket拷贝到用户态内存,然后清空准备就绪list链表,最后,epoll_wait
需要做的事情,就是检查这些socket,如果不是ET模式(就是LT模式的句柄了),并且这些socket上确实有未处理的事件时,又把该句柄放回到刚刚清空的准备就绪链表了。所以,非ET的句柄,只要它上面还有事件,epoll_wait每次都会返回。而ET模式的句柄,除非有新中断到,即使socket上的事件没有处理完,也是不会每次从epoll_wait返回的。
因此epoll比select的提高实际上是一个用空间换时间思想的具体应用.对比阻塞IO的处理模型, 可以看到采用了多路复用IO之后, 程序可以自由的进行自己除了IO操作之外的工作, 只有到IO状态发生变化的时候由多路复用IO进行通知, 然后再采取相应的操作, 而不用一直阻塞等待IO状态发生变化,提高效率.
7. Golang GC 时会发生什么?
首先我们先来了解下垃圾回收.什么是垃圾回收?
内存管理是程序员开发应用的一大难题。传统的系统级编程语言(主要指C/C++)中,程序开发者必须对内存小心的进行管理操作,控制内存的申请及释放。因为稍有不慎,就可能产生内存泄露问题,这种问题不易发现并且难以定位,一直成为困扰程序开发者的噩梦。如何解决这个头疼的问题呢?
过去一般采用两种办法:
-
内存泄露检测工具。这种工具的原理一般是静态代码扫描,通过扫描程序检测可能出现内存泄露的代码段。然而检测工具难免有疏漏和不足,只能起到辅助作用。
-
智能指针。这是 c++ 中引入的自动内存管理方法,通过拥有自动内存管理功能的指针对象来引用对象,是程序员不用太关注内存的释放,而达到内存自动释放的目的。这种方法是采用最广泛的做法,但是对程序开发者有一定的学习成本(并非语言层面的原生支持),而且一旦有忘记使用的场景依然无法避免内存泄露。
为了解决这个问题,后来开发出来的几乎所有新语言(java,python,php等等)都引入了语言层面的自动内存管理 – 也就是语言的使用者只用关注内存的申请而不必关心内存的释放,内存释放由虚拟机(virtual machine)或运行时(runtime)来自动进行管理。而这种对不再使用的内存资源进行自动回收的行为就被称为垃圾回收。
常用的垃圾回收的方法:
- 引用计数(reference counting)
这是最简单的一种垃圾回收算法,和之前提到的智能指针异曲同工。对每个对象维护一个引用计数,当引用该对象的对象被销毁或更新时被引用对象的引用计数自动减一,当被引用对象被创建或被赋值给其他对象时引用计数自动加一。当引用计数为0时则立即回收对象。
这种方法的优点是实现简单,并且内存的回收很及时。这种算法在内存比较紧张和实时性比较高的系统中使用的比较广泛,如ios cocoa框架,php,python等。
但是简单引用计数算法也有明显的缺点:
- 频繁更新引用计数降低了性能。
一种简单的解决方法就是编译器将相邻的引用计数更新操作合并到一次更新;还有一种方法是针对频繁发生的临时变量引用不进行计数,而是在引用达到0时通过扫描堆栈确认是否还有临时对象引用而决定是否释放。等等还有很多其他方法,具体可以参考这里。
- 循环引用。
当对象间发生循环引用时引用链中的对象都无法得到释放。最明显的解决办法是避免产生循环引用,如cocoa引入了strong指针和weak指针两种指针类型。或者系统检测循环引用并主动打破循环链。当然这也增加了垃圾回收的复杂度。
- 标记-清除(mark and sweep)
标记-清除(mark and sweep)分为两步,标记从根变量开始迭代得遍历所有被引用的对象,对能够通过应用遍历访问到的对象都进行标记为“被引用”;标记完成后进行清除操作,对没有标记过的内存进行回收(回收同时可能伴有碎片整理操作)。这种方法解决了引用计数的不足,但是也有比较明显的问题:每次启动垃圾回收都会暂停当前所有的正常代码执行,回收是系统响应能力大大降低!当然后续也出现了很多mark&sweep算法的变种(如三色标记法)优化了这个问题。
- 分代搜集(generation)
java的jvm 就使用的分代回收的思路。在面向对象编程语言中,绝大多数对象的生命周期都非常短。分代收集的基本思想是,将堆划分为两个或多个称为代(generation)的空间。新创建的对象存放在称为新生代(young generation)中(一般来说,新生代的大小会比 老年代小很多),随着垃圾回收的重复执行,生命周期较长的对象会被提升(promotion)到老年代中(这里用到了一个分类的思路,这个是也是科学思考的一个基本思路)。
因此,新生代垃圾回收和老年代垃圾回收两种不同的垃圾回收方式应运而生,分别用于对各自空间中的对象执行垃圾回收。新生代垃圾回收的速度非常快,比老年代快几个数量级,即使新生代垃圾回收的频率更高,执行效率也仍然比老年代垃圾回收强,这是因为大多数对象的生命周期都很短,根本无需提升到老年代。
Golang GC 时会发生什么?
Golang 1.5后,采取的是“非分代的、非移动的、并发的、三色的”标记清除垃圾回收算法。
golang 中的 gc 基本上是标记清除的过程:
gc的过程一共分为四个阶段:
- 栈扫描(开始时STW)
- 第一次标记(并发)
- 第二次标记(STW)
- 清除(并发)
整个进程空间里申请每个对象占据的内存可以视为一个图,初始状态下每个内存对象都是白色标记。
- 先STW,做一些准备工作,比如 enable write barrier。然后取消STW,将扫描任务作为多个并发的goroutine立即入队给调度器,进而被CPU处理
- 第一轮先扫描root对象,包括全局指针和 goroutine 栈上的指针,标记为灰色放入队列
- 第二轮将第一步队列中的对象引用的对象置为灰色加入队列,一个对象引用的所有对象都置灰并加入队列后,这个对象才能置为黑色并从队列之中取出。循环往复,最后队列为空时,整个图剩下的白色内存空间即不可到达的对象,即没有被引用的对象;
- 第三轮再次STW,将第二轮过程中新增对象申请的内存进行标记(灰色),这里使用了write barrier(写屏障)去记录
Golang gc 优化的核心就是尽量使得 STW(Stop The World) 的时间越来越短。
详细的Golang的GC介绍可以参看Golang垃圾回收.
8. Golang 中 Goroutine 如何调度?
goroutine是Golang语言中最经典的设计,也是其魅力所在,goroutine的本质是协程,是实现并行计算的核心。 goroutine使用方式非常的简单,只需使用go关键字即可启动一个协程,并且它是处于异步方式运行,你不需要等它运行完成以后在执行以后的代码。
go func()//通过go关键字启动一个协程来运行函数
协程:
协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈。 因此,协程能保留上一次调用时的状态(即所有局部状态的一个特定组合),每次过程重入时,就相当于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置。 线程和进程的操作是由程序触发系统接口,最后的执行者是系统;协程的操作执行者则是用户自身程序,goroutine也是协程。
groutine能拥有强大的并发实现是通过GPM调度模型实现.
Go的调度器内部有四个重要的结构:M,P,S,Sched,如上图所示(Sched未给出).
- M:M代表内核级线程,一个M就是一个线程,goroutine就是跑在M之上的;M是一个很大的结构,里面维护小对象内存cache(mcache)、当前执行的goroutine、随机数发生器等等非常多的信息
- G:代表一个goroutine,它有自己的栈,instruction pointer和其他信息(正在等待的channel等等),用于调度。
- P:P全称是Processor,处理器,它的主要用途就是用来执行goroutine的,所以它也维护了一个goroutine队列,里面存储了所有需要它来执行的goroutine
- Sched:代表调度器,它维护有存储M和G的队列以及调度器的一些状态信息等。
调度实现:
从上图中可以看到,有2个物理线程M,每一个M都拥有一个处理器P,每一个也都有一个正在运行的goroutine。P的数量可以通过GOMAXPROCS()来设置,它其实也就代表了真正的并发度,即有多少个goroutine可以同时运行。
图中灰色的那些goroutine并没有运行,而是出于ready的就绪态,正在等待被调度。P维护着这个队列(称之为runqueue),Go语言里,启动一个goroutine很容易:go function 就行,所以每有一个go语句被执行,runqueue队列就在其末尾加入一个goroutine,在下一个调度点,就从runqueue中取出(如何决定取哪个goroutine?)一个goroutine执行。
当一个OS线程M0陷入阻塞时,P转而在运行M1,图中的M1可能是正被创建,或者从线程缓存中取出。
当MO返回时,它必须尝试取得一个P来运行goroutine,一般情况下,它会从其他的OS线程那里拿一个P过来, 如果没有拿到的话,它就把goroutine放在一个global runqueue里,然后自己睡眠(放入线程缓存里)。所有的P也会周期性的检查global runqueue并运行其中的goroutine,否则global runqueue上的goroutine永远无法执行。
另一种情况是P所分配的任务G很快就执行完了(分配不均),这就导致了这个处理器P很忙,但是其他的P还有任务,此时如果global runqueue没有任务G了,那么P不得不从其他的P里拿一些G来执行。
通常来说,如果P从其他的P那里要拿任务的话,一般就拿run queue的一半,这就确保了每个OS线程都能充分的使用。
9. 并发编程概念是什么?
并行是指两个或者多个事件在同一时刻发生;并发是指两个或多个事件在同一时间间隔发生。
并行是在不同实体上的多个事件,并发是在同一实体上的多个事件。在一台处理器上“同时”处理多个任务,在多台处理器上同时处理多个任务。如hadoop分布式集群
并发偏重于多个任务交替执行,而多个任务之间有可能还是串行的。而并行是真正意义上的“同时执行”。
并发编程是指在一台处理器上“同时”处理多个任务。并发是在同一实体上的多个事件。多个事件在同一时间间隔发生。并发编程的目标是充分的利用处理器的每一个核,以达到最高的处理性能。
10. 负载均衡原理是什么?
负载均衡Load Balance)是高可用网络基础架构的关键组件,通常用于将工作负载分布到多个服务器来提高网站、应用、数据库或其他服务的性能和可靠性。负载均衡,其核心就是网络流量分发,分很多维度。
负载均衡(Load Balance)通常是分摊到多个操作单元上进行执行,例如Web服务器、FTP服务器、企业关键应用服务器和其它关键任务服务器等,从而共同完成工作任务。
负载均衡是建立在现有网络结构之上,它提供了一种廉价有效透明的方法扩展网络设备和服务器的带宽、增加吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性。
通过一个例子详细介绍:
- 没有负载均衡 web 架构
在这里用户是直连到 web 服务器,如果这个服务器宕机了,那么用户自然也就没办法访问了。 另外,如果同时有很多用户试图访问服务器,超过了其能处理的极限,就会出现加载速度缓慢或根本无法连接的情况。
而通过在后端引入一个负载均衡器和至少一个额外的 web 服务器,可以缓解这个故障。 通常情况下,所有的后端服务器会保证提供相同的内容,以便用户无论哪个服务器响应,都能收到一致的内容。
- 有负载均衡 web 架构
用户访问负载均衡器,再由负载均衡器将请求转发给后端服务器。在这种情况下,单点故障现在转移到负载均衡器上了。 这里又可以通过引入第二个负载均衡器来缓解。
那么负载均衡器的工作方式是什么样的呢,负载均衡器又可以处理什么样的请求?
负载均衡器的管理员能主要为下面四种主要类型的请求设置转发规则:
- HTTP (七层)
- HTTPS (七层)
- TCP (四层)
- UDP (四层)
负载均衡器如何选择要转发的后端服务器?
负载均衡器一般根据两个因素来决定要将请求转发到哪个服务器。首先,确保所选择的服务器能够对请求做出响应,然后根据预先配置的规则从健康服务器池(healthy pool)中进行选择。
因为,负载均衡器应当只选择能正常做出响应的后端服务器,因此就需要有一种判断后端服务器是否健康的方法。为了监视后台服务器的运行状况,运行状态检查服务会定期尝试使用转发规则定义的协议和端口去连接后端服务器。 如果,服务器无法通过健康检查,就会从池中剔除,保证流量不会被转发到该服务器,直到其再次通过健康检查为止。
负载均衡算法
负载均衡算法决定了后端的哪些健康服务器会被选中。 其中常用的算法包括:
- Round Robin(轮询):为第一个请求选择列表中的第一个服务器,然后按顺序向下移动列表直到结尾,然后循环。
- Least Connections(最小连接):优先选择连接数最少的服务器,在普遍会话较长的情况下推荐使用。
- Source:根据请求源的 IP 的散列(hash)来选择要转发的服务器。这种方式可以一定程度上保证特定用户能连接到相同的服务器。
如果你的应用需要处理状态而要求用户能连接到和之前相同的服务器。可以通过 Source 算法基于客户端的 IP 信息创建关联,或者使用粘性会话(sticky sessions)。
除此之外,想要解决负载均衡器的单点故障问题,可以将第二个负载均衡器连接到第一个上,从而形成一个集群。