1. Golang中除了加Mutex锁以外还有哪些方式安全读写共享变量?
Golang中Goroutine 可以通过 Channel 进行安全读写共享变量。

2. 无缓冲 Chan 的发送和接收是否同步?
ch := make(chan int)    无缓冲的channel由于没有缓冲发送和接收需要同步.
ch := make(chan int, 2) 有缓冲channel不要求发送和接收操作同步. 
channel无缓冲时,发送阻塞直到数据被接收,接收阻塞直到读到数据。
channel有缓冲时,当缓冲满时发送阻塞,当缓冲空时接收阻塞。


3. go语言的并发机制以及它所使用的CSP并发模型.
CSP模型是上个世纪七十年代提出的,不同于传统的多线程通过共享内存来通信,CSP讲究的是“以通信的方式来共享内存”。用于描述两个独立的并发实体通过共享的通讯 channel(管道)进行通信的并发模型。 CSP中channel是第一类对象,它不关注发送消息的实体,而关注与发送消息时使用的channel。

Golang中channel 是被单独创建并且可以在进程之间传递,它的通信模式类似于 boss-worker 模式的,一个实体通过将消息发送到channel 中,然后又监听这个 channel 的实体处理,两个实体之间是匿名的,这个就实现实体中间的解耦,其中 channel 是同步的一个消息被发送到 channel 中,最终是一定要被另外的实体消费掉的,在实现原理上其实类似一个阻塞的消息队列。

Goroutine 是Golang实际并发执行的实体,它底层是使用协程(coroutine)实现并发,coroutine是一种运行在用户态的用户线程,类似于 greenthread,go底层选择使用coroutine的出发点是因为,它具有以下特点:

用户空间 避免了内核态和用户态的切换导致的成本。
可以由语言和框架层进行调度。
更小的栈空间允许创建大量的实例。
Golang中的Goroutine的特性:

Golang内部有三个对象: P对象(processor) 代表上下文(或者可以认为是cpu),M(work thread)代表工作线程,G对象(goroutine).

正常情况下一个cpu对象启一个工作线程对象,线程去检查并执行goroutine对象。碰到goroutine对象阻塞的时候,会启动一个新的工作线程,以充分利用cpu资源。 所有有时候线程对象会比处理器对象多很多.

我们用如下图分别表示P、M、G:

 

G(Goroutine) :我们所说的协程,为用户级的轻量级线程,每个Goroutine对象中的sched保存着其上下文信息.

M(Machine) :对内核级线程的封装,数量对应真实的CPU数(真正干活的对象).

P(Processor) :即为G和M的调度对象,用来调度G和M之间的关联关系,其数量可通过GOMAXPROCS()来设置,默认为核心数.

在单核情况下,所有Goroutine运行在同一个线程(M0)中,每一个线程维护一个上下文(P),任何时刻,一个上下文中只有一个Goroutine,其他Goroutine在runqueue中等待。

一个Goroutine运行完自己的时间片后,让出上下文,自己回到runqueue中(如下图所示)。

当正在运行的G0阻塞的时候(可以需要IO),会再创建一个线程(M1),P转到新的线程中去运行。

 

当M0返回时,它会尝试从其他线程中“偷”一个上下文过来,如果没有偷到,会把Goroutine放到Global runqueue中去,然后把自己放入线程缓存中。 上下文会定时检查Global runqueue。

Golang是为并发而生的语言,Go语言是为数不多的在语言层面实现并发的语言;也正是Go语言的并发特性,吸引了全球无数的开发者。

Golang的CSP并发模型,是通过Goroutine和Channel来实现的。

Goroutine 是Go语言中并发的执行单位。有点抽象,其实就是和传统概念上的”线程“类似,可以理解为”线程“。 Channel是Go语言中各个并发结构体(Goroutine)之前的通信机制。通常Channel,是各个Goroutine之间通信的”管道“,有点类似于Linux中的管道。

通信机制channel也很方便,传数据用channel <- data,取数据用<-channel。

在通信过程中,传数据channel <- data和取数据<-channel必然会成对出现,因为这边传,那边取,两个goroutine之间才会实现通信。

而且不管传还是取,必阻塞,直到另外的goroutine传或者取为止。


4. Golang 中常用的并发模型?
Golang 中常用的并发模型有三种:

通过channel通知实现并发控制
无缓冲的通道指的是通道的大小为0,也就是说,这种类型的通道在接收前没有能力保存任何值,它要求发送 goroutine 和接收 goroutine 同时准备好,才可以完成发送和接收操作。

从上面无缓冲的通道定义来看,发送 goroutine 和接收 gouroutine 必须是同步的,同时准备后,如果没有同时准备好的话,先执行的操作就会阻塞等待,直到另一个相对应的操作准备好为止。这种无缓冲的通道我们也称之为同步通道。

func main() {
    ch := make(chan struct{}) go func() { fmt.Println("start working") time.Sleep(time.Second * 1) ch <- struct{}{} }() <-ch fmt.Println("finished") }
当主 goroutine 运行到 <-ch 接受 channel 的值的时候,如果该 channel 中没有数据,就会一直阻塞等待,直到有值。 这样就可以简单实现并发控制

通过sync包中的WaitGroup实现并发控制
Goroutine是异步执行的,有的时候为了防止在结束mian函数的时候结束掉Goroutine,所以需要同步等待,这个时候就需要用 WaitGroup了,在 sync 包中,提供了 WaitGroup ,它会等待它收集的所有 goroutine 任务全部完成。在WaitGroup里主要有三个方法:

Add, 可以添加或减少 goroutine的数量.
Done, 相当于Add(-1).
Wait, 执行后会堵塞主线程,直到WaitGroup 里的值减至0.
在主 goroutine 中 Add(delta int) 索要等待goroutine 的数量。 在每一个 goroutine 完成后 Done() 表示这一个goroutine 已经完成,当所有的 goroutine 都完成后,在主 goroutine 中 WaitGroup 返回返回。

func main(){
    var wg sync.WaitGroup
    var urls = []string{ "http://www.golang.org/", "http://www.google.com/", } for _, url := range urls { wg.Add(1) go func(url string) { defer wg.Done() http.Get(url) }(url) } wg.Wait() }
在Golang官网中对于WaitGroup介绍是A WaitGroup must not be copied after first use,在 WaitGroup 第一次使用后,不能被拷贝

应用示例:

func main(){
 wg := sync.WaitGroup{}
    for i := 0; i < 5; i++ { wg.Add(1) go func(wg sync.WaitGroup, i int) { fmt.Printf("i:%d", i) wg.Done() }(wg, i) } wg.Wait() fmt.Println("exit") } 
运行:

i:1i:3i:2i:0i:4fatal error: all goroutines are asleep - deadlock!

goroutine 1 [semacquire]:
sync.runtime_Semacquire(0xc000094018)
        /home/keke/soft/go/src/runtime/sema.go:56 +0x39 sync.(*WaitGroup).Wait(0xc000094010) /home/keke/soft/go/src/sync/waitgroup.go:130 +0x64 main.main() /home/keke/go/Test/wait.go:17 +0xab exit status 2
它提示所有的 goroutine 都已经睡眠了,出现了死锁。这是因为 wg 给拷贝传递到了 goroutine 中,导致只有 Add 操作,其实 Done操作是在 wg 的副本执行的。

因此 Wait 就死锁了。

这个第一个修改方式:将匿名函数中 wg 的传入类型改为 *sync.WaitGrou,这样就能引用到正确的WaitGroup了。 这个第二个修改方式:将匿名函数中的 wg 的传入参数去掉,因为Go支持闭包类型,在匿名函数中可以直接使用外面的 wg 变量

在Go 1.7 以后引进的强大的Context上下文,实现并发控制
通常,在一些简单场景下使用 channel 和 WaitGroup 已经足够了,但是当面临一些复杂多变的网络并发场景下 channel 和 WaitGroup 显得有些力不从心了。 比如一个网络请求 Request,每个 Request 都需要开启一个 goroutine 做一些事情,这些 goroutine 又可能会开启其他的 goroutine,比如数据库和RPC服务。 所以我们需要一种可以跟踪 goroutine 的方案,才可以达到控制他们的目的,这就是Go语言为我们提供的 Context,称之为上下文非常贴切,它就是goroutine 的上下文。 它是包括一个程序的运行环境、现场和快照等。每个程序要运行时,都需要知道当前程序的运行状态,通常Go 将这些封装在一个 Context 里,再将它传给要执行的 goroutine 。

context 包主要是用来处理多个 goroutine 之间共享数据,及多个 goroutine 的管理。

context 包的核心是 struct Context,接口声明如下:

// A Context carries a deadline, cancelation signal, and request-scoped values
// across API boundaries. Its methods are safe for simultaneous use by multiple
// goroutines. type Context interface { // Done returns a channel that is closed when this `Context` is canceled // or times out. Done() <-chan struct{} // Err indicates why this Context was canceled, after the Done channel // is closed. Err() error // Deadline returns the time when this Context will be canceled, if any. Deadline() (deadline time.Time, ok bool) // Value returns the value associated with key or nil if none. Value(key interface{}) interface{} }
Done() 返回一个只能接受数据的channel类型,当该context关闭或者超时时间到了的时候,该channel就会有一个取消信号

Err() 在Done() 之后,返回context 取消的原因。

Deadline() 设置该context cancel的时间点

Value() 方法允许 Context 对象携带request作用域的数据,该数据必须是线程安全的。

Context 对象是线程安全的,你可以把一个 Context 对象传递给任意个数的 gorotuine,对它执行 取消 操作时,所有 goroutine 都会接收到取消信号。

一个 Context 不能拥有 Cancel 方法,同时我们也只能 Done channel 接收数据。 其中的原因是一致的:接收取消信号的函数和发送信号的函数通常不是一个。 典型的场景是:父操作为子操作操作启动 goroutine,子操作也就不能取消父操作。

5. JSON 标准库对 nil slice 和 空 slice 的处理是一致的吗?
首先JSON 标准库对 nil slice 和 空 slice 的处理是不一致.

通常错误的用法,会报数组越界的错误,因为只是声明了slice,却没有给实例化的对象。

var slice []int
slice[1] = 0
此时slice的值是nil,这种情况可以用于需要返回slice的函数,当函数出现异常的时候,保证函数依然会有nil的返回值。

empty slice 是指slice不为nil,但是slice没有值,slice的底层的空间是空的,此时的定义如下:

slice := make([]int,0)
slice := []int{}
当我们查询或者处理一个空的列表的时候,这非常有用,它会告诉我们返回的是一个列表,但是列表内没有任何值。

总之,nil slice 和 empty slice是不同的东西,需要我们加以区分的.