21.简要说一下数据库范式?
第一范式(1NF):强调的是列的原子性,即数据库表的每一列都是不可分割的原子数据项。
第二范式(2NF):要求实体的属性完全依赖于主关键字。所谓完全依赖是指不能存在仅依赖主关键字一部分的属性。(在1NF基础上消除非主属性对主键的部分函数依赖)
第三范式(3NF):任何非主属性不依赖于其它非主属性。(在2NF基础上消除传递依赖)
22.一千万条数据的表, 如何分页查询?
数据量过大的情况下, limit offset分页会由于扫描数据太多而越往后查询越慢. 可以配合当前页最后一条ID进行查询, SELECT * FROM T WHERE id > #{ID} LIMIT #{LIMIT}. 当然, 这种情况下ID必须是有序的, 这也是有序ID的好处之一.
23.订单表数据量越来越大导致查询缓慢, 如何处理?
一张自增表里面总共有 7 条数据,删除了最后 2 条数据,重启 MySQL 数据库,又插入了一条数据,此时 id 是几?
24.如何获取当前数据库版本?
使用 select version() 获取当前 MySQL 数据库版本。
25.说一下 ACID 是什么?
- Atomicity(原子性):一个事务(transaction)中的所有操作,或者全部完成,或者全部不完成,不会结束在中间某个环节。事务在执行过程中发生错误,会被恢复(Rollback)到事务开始前的状态,就像这个事务从来没有执行过一样。即,事务不可分割、不可约简。
- Consistency(一致性):在事务开始之前和事务结束以后,数据库的完整性没有被破坏。这表示写入的资料必须完全符合所有的预设约束、触发器、级联回滚等。
- Isolation(隔离性):数据库允许多个并发事务同时对其数据进行读写和修改的能力,隔离性可以防止多个事务并发执行时由于交叉执行而导致数据的不一致。事务隔离分为不同级别,包括读未提交(Read uncommitted)、读提交(read committed)、可重复读(repeatable read)和串行化(Serializable)。
- Durability(持久性):事务处理结束后,对数据的修改就是永久的,即便系统故障也不会丢失。
26.MySQL 的内连接、左连接、右连接有什么区别?
内连接关键字:inner join;左连接:left join;右连接:right join。内连接是把匹配的关联数据显示出来;左连接是左边的表全部显示出来,右边的表显示出符合条件的数据;右连接正好相反。
27.MySQL 索引是怎么实现的?
索引是满足某种特定查找算法的数据结构,而这些数据结构会以某种方式指向数据,从而实现高效查找数据。具体来说 MySQL 中的索引,不同的数据引擎实现有所不同,但目前主流的数据库引擎的索引都是 B+ 树实现的,B+ 树的搜索效率,可以到达二分法的性能,找到数据区域之后就找到了完整的数据结构了,所有索引的性能也是更好的。
28.怎么验证 MySQL 的索引是否满足需求?
使用 explain 查看 SQL 是如何执行查询语句的,从而分析你的索引是否满足需求。explain 语法:explain select * from table where type=1。
29.说一下 MySQL 的行锁和表锁?
MyISAM 只支持表锁,InnoDB 支持表锁和行锁,默认为行锁。表级锁:开销小,加锁快,不会出现死锁。锁定粒度大,发生锁冲突的概率最高,并发量最低。行级锁:开销大,加锁慢,会出现死锁。锁力度小,发生锁冲突的概率小,并发度最高。
30.说一下乐观锁和悲观锁?
乐观锁:每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在提交更新的时候会判断一下在此期间别人有没有去更新这个数据。
悲观锁:每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻止,直到这个锁被释放。数据库的乐观锁需要自己实现,在表里面添加一个 version 字段,每次修改成功值加 1,这样每次修改的时候先对比一下,自己拥有的 version 和数据库现在的 version 是否一致,如果不一致就不修改,这样就实现了乐观锁。
31.MySQL 问题排查都有哪些手段?
使用 show processlist 命令查看当前所有连接信息。使用 explain 命令查询 SQL 语句执行计划。开启慢查询日志,查看慢查询的 SQL。
32.如何做 MySQL 的性能优化?
为搜索字段创建索引。
避免使用 select *,列出需要查询的字段。
垂直分割分表。
选择正确的存储引擎。
33.常用的Mysql复制架构有哪些?
1)一主多从 在主库读取请求压力非常大的场景下, 可以通过配置一主多从复制架构实现读写分离, 把大量对实时性要求不是特别高的读请求通过负载均衡分布到多个从库上, 降低主库的读取压力,在主库出现异常宕机的情况下, 可以把一个从库切换为主库继续提供服务 。
2)多级复制 一主多从的架构能够解决大部分读请求压力特别大的场景的需求, 考虑到 MysQL的复制是主库“推送” Binlog日志到从库,主库的 I/0压力和网络压力会随着从库的增加而增长(每个从库都会在主库上有一个独立的 Binlog Dump线程来发送事件), 而多级复制架构解决了一主多从场景下,主库额外的 I/0和网络压力。
3)双主复制/Dual Master 其实就是主库 Master和 Master2互为主从, client客户端的写请求都访问主库 Master,而读请求可以选择访问主库 Master或 Master2。
34.请你介绍一下mysql的MVCC机制
MVCC是一种多版本并发控制机制,是MySQL的InnoDB存储引擎实现隔离级别的一种具体方式,用于实现提交读和可重复读这两种隔离级别。MVCC是通过保存数据在某个时间点的快照来实现该机制,其在每行记录后面保存两个隐藏的列,分别保存这个行的创建版本号和删除版本号,然后Innodb的MVCC使用到的快照存储在Undo日志中,该日志通过回滚指针把一个数据行所有快照连接起来。
35.请问SQL优化方法有哪些
通过建立索引对查询进行优化
对查询进行优化,应尽量避免全表扫描
36.请你说一下MySQL引擎和区别
1、MySQL引擎
MySQL中的数据用各种不同的技术存储在文件(或者内存)中。这些技术中的每一种技术都使用不同的存储机制、索引技巧、锁定水平并且最终提供广泛的不同的功能和能力。通过选择不同的技术,你能够获得额外的速度或者功能,从而改善你的应用的整体功能。
数据库引擎是用于存储、处理和保护数据的核心服务。利用数据库引擎可控制访问权限并快速处理事务,从而满足企业内大多数需要处理大量数据的应用程序的要求。使用数据库引擎创建用于联机事务处理或联机分析处理数据的关系数据库。这包括创建用于存储数据的表和用于查看、管理和保护数据安全的数据库对象(如索引、视图和存储过程)。
MySQL存储引擎主要有:MyIsam、InnoDB、Memory、Blackhole、CSV、Performance_Schema、Archive、Federated、Mrg_Myisam。
但是最常用的是InnoDB和Mylsam。
2、InnoDB
InnoDB是一个事务型的存储引擎,有行级锁定和外键约束。
Innodb引擎提供了对数据库ACID事务的支持,并且实现了SQL标准的四种隔离级别,关于数据库事务与其隔离级别的内容请见数据库事务与其隔离级别这类型的文章。该引擎还提供了行级锁和外键约束,它的设计目标是处理大容量数据库系统,它本身其实就是基于MySQL后台的完整数据库系统,MySQL运行时Innodb会在内存中建立缓冲池,用于缓冲数据和索引。但是该引擎不支持FULLTEXT类型的索引,而且它没有保存表的行数,当SELECT COUNT(*) FROM TABLE时需要扫描全表。当需要使用数据库事务时,该引擎当然是首选。由于锁的粒度更小,写操作不会锁定全表,所以在并发较高时,使用Innodb引擎会提升效率。但是使用行级锁也不是绝对的,如果在执行一个SQL语句时MySQL不能确定要扫描的范围,InnoDB表同样会锁全表。
适用场景:
经常更新的表,适合处理多重并发的更新请求。
支持事务。
可以从灾难中恢复(通过bin-log日志等)。
外键约束。只有他支持外键。
支持自动增加列属性auto_increment。
索引结构:
InnoDB也是B+Treee索引结构。Innodb的索引文件本身就是数据文件,即B+Tree的数据域存储的就是实际的数据,这种索引就是聚集索引。这个索引的key就是数据表的主键,因此InnoDB表数据文件本身就是主索引。
InnoDB的辅助索引数据域存储的也是相应记录主键的值而不是地址,所以当以辅助索引查找时,会先根据辅助索引找到主键,再根据主键索引找到实际的数据。所以Innodb不建议使用过长的主键,否则会使辅助索引变得过大。建议使用自增的字段作为主键,这样B+Tree的每一个结点都会被顺序的填满,而不会频繁的分裂调整,会有效的提升插入数据的效率。
3、Mylsam
MyIASM是MySQL默认的引擎,但是它没有提供对数据库事务的支持,也不支持行级锁和外键,因此当INSERT或UPDATE数据时即写操作需要锁定整个表,效率便会低一些。MyIsam 存储引擎独立于操作系统,也就是可以在windows上使用,也可以比较简单的将数据转移到linux操作系统上去。
适用场景:
不支持事务的设计,但是并不代表着有事务操作的项目不能用MyIsam存储引擎,可以在service层进行根据自己的业务需求进行相应的控制。
不支持外键的表设计。
查询速度很快,如果数据库insert和update的操作比较多的话比较适用。
整天对表进行加锁的场景。
MyISAM极度强调快速读取操作。
MyIASM中存储了表的行数,于是SELECT COUNT(*) FROM TABLE时只需要直接读取已经保存好的值而不需要进行全表扫描。如果表的读操作远远多于写操作且不需要数据库事务的支持,那么MyIASM也是很好的选择。
缺点:就是不能在表损坏后主动恢复数据。
索引结构:
MyISAM索引结构:MyISAM索引用的B+ tree来储存数据,MyISAM索引的指针指向的是键值的地址,地址存储的是数据。B+Tree的数据域存储的内容为实际数据的地址,也就是说它的索引和实际的数据是分开的,只不过是用索引指向了实际的数据,这种索引就是所谓的非聚集索引。
3、InnoDB和Mylsam的区别:
1)事务:MyISAM类型不支持事务处理等高级处理,而InnoDB类型支持,提供事务支持已经外部键等高级数据库功能。
2)性能:MyISAM类型的表强调的是性能,其执行数度比InnoDB类型更快。
3)行数保存:InnoDB 中不保存表的具体行数,也就是说,执行select count() fromtable时,InnoDB要扫描一遍整个表来计算有多少行,但是MyISAM只要简单的读出保存好的行数即可。注意的是,当count()语句包含where条件时,两种表的操作是一样的。
4)索引存储:对于AUTO_INCREMENT类型的字段,InnoDB中必须包含只有该字段的索引,但是在MyISAM表中,可以和其他字段一起建立联合索引。MyISAM支持全文索引(FULLTEXT)、压缩索引,InnoDB不支持。
MyISAM的索引和数据是分开的,并且索引是有压缩的,内存使用率就对应提高了不少。能加载更多索引,而Innodb是索引和数据是紧密捆绑的,没有使用压缩从而会造成Innodb比MyISAM体积庞大不小。
InnoDB存储引擎被完全与MySQL服务器整合,InnoDB存储引擎为在主内存中缓存数据和索引而维持它自己的缓冲池。InnoDB存储它的表&索引在一个表空间中,表空间可以包含数个文件(或原始磁盘分区)。这与MyISAM表不同,比如在MyISAM表中每个表被存在分离的文件中。InnoDB 表可以是任何尺寸,即使在文件尺寸被限制为2GB的操作系统上。
5)服务器数据备份:InnoDB必须导出SQL来备份,LOAD TABLE FROM MASTER操作对InnoDB是不起作用的,解决方法是首先把InnoDB表改成MyISAM表,导入数据后再改成InnoDB表,但是对于使用的额外的InnoDB特性(例如外键)的表不适用。
MyISAM应对错误编码导致的数据恢复速度快。MyISAM的数据是以文件的形式存储,所以在跨平台的数据转移中会很方便。在备份和恢复时可单独针对某个表进行操作。
InnoDB是拷贝数据文件、备份 binlog,或者用 mysqldump,在数据量达到几十G的时候就相对痛苦了。
6)锁的支持:MyISAM只支持表锁。InnoDB支持表锁、行锁 行锁大幅度提高了多用户并发操作的新能。但是InnoDB的行锁,只是在WHERE的主键是有效的,非主键的WHERE都会锁全表的。
37.mysql中一个表最多可建立多少索引
MyISAM 存储引擎的话,最多64个索引。索引中字段字节总和不得大于 1000 bytes
Innodb 则没有什么具体的限制。
38.说一下数据库的事务隔离?
MySQL 的事务隔离是在 MySQL. ini 配置文件里添加的,在文件的最后添加:
transaction-isolation = REPEATABLE-READ 1 可用的配置值:READ-UNCOMMITTED、READ-COMMITTED、REPEATABLE-READ、SERIALIZABLE。
- READ-UNCOMMITTED:未提交读,最低隔离级别、事务未提交前,就可被其他事务读取(会出现幻读、脏读、不可重复读)。
- READ-COMMITTED:提交读,一个事务提交后才能被其他事务读取到(会造成幻读、不可重复读)。
- REPEATABLE-READ:可重复读,默认级别,保证多次读取同一个数据时,其值都和事务开始时候的内容是一致,禁止读取到别的事务未提交的数据(会造成幻读)。
- SERIALIZABLE:序列化,代价最高最可靠的隔离级别,该隔离级别能防止脏读、不可重复读、幻读。脏读 :表示一个事务能够读取另一个事务中还未提交的数据。比如,某个事务尝试插入记录 A,此时该事务还未提交,然后另一个事务尝试读取到了记录 A。不可重复读 :是指在一个事务内,多次读同一数据。幻读 :指同一个事务内多次查询返回的结果集不一样。比如同一个事务 A 第一次查询时候有 n 条记录,但是第二次同等条件下查询却有 n+1 条记录,这就好像产生了幻觉。发生幻读的原因也是另外一个事务新增或者删除或者修改了第一个事务结果集里面的数据,同一个记录的数据内容被修改了,所有数据行的记录就变多或者变少了